Approximation Metrics Based on Probabilistic Bisimulations for General State-Space Markov Processes: A Survey
نویسنده
چکیده
This article provides a survey of approximation metrics for stochastic processes. We deal with Markovian processes in discrete time evolving on general state spaces, namely on domains with infinite cardinality and endowed with proper measurability and metric structures. The focus of this work is to discuss approximation metrics between two such processes, based on the notion of probabilistic bisimulation: in particular we investigate metrics characterized by an approximate variant of this notion. We suggests that metrics between two processes can be introduced essentially in two distinct ways: the first employs the probabilistic conditional kernels underlying the two stochastic processes under study, and leverages notions derived from algebra, logic, or category theory; whereas the second looks at distances between trajectories of the two processes, and is based on the dynamical properties of the two processes (either their syntax, via the notion of bisimulation function; or their semantics, via sampling techniques). The survey moreover covers the problem of constructing formal approximations of stochastic processes according to the introduced metrics.
منابع مشابه
Bisimulations for Nondeterministic Labeled Markov Processes
We extend the theory of labeled Markov processes with internal nondeterminism, a fundamental concept for the further development of a process theory with abstraction on nondeterministic continuous probabilistic systems. We define nondeterministic labeled Markov processes (NLMP) and provide three definition of bisimulations: a bisimulation following a traditional characterization, a state based ...
متن کاملApproximating Labelled Markov Processes Again!
Labelled Markov processes are continuous-state fully probabilistic labelled transition systems. They can be seen as co-algebras of a suitable monad on the category of measurable space. The theory as developed so far included a treatment of bisimulation, logical characterization of bisimulation, weak bisimulation, metrics, universal domains for LMPs and approximations. Much of the theory involve...
متن کاملSampling-based Approximations with Quantitative Performance for the Probabilistic Reach-Avoid Problem over General Markov Processes
This article deals with stochastic processes endowed with the Markov (memoryless) property and evolving over general (uncountable) state spaces. The models further depend on a non-deterministic quantity in the form of a control input, which can be selected to affect the probabilistic dynamics. We address the synthesis of optimal controllers that maximize the probability associated to a rather g...
متن کاملHigher-Order Approximations for Verification of Stochastic Hybrid Systems
This work investigates the approximate verification of probabilistic specifications expressed as any non-nested PCTL formula over Markov processes on general state spaces. The contribution puts forward new algorithms, based on higher-order function approximation, for the efficient computation of approximate solutions with explicit bounds on the error. Approximation error related to higher-order...
متن کاملApproximating labelled Markov processes
Labelled Markov processes are probabilistic versions of labelled transition systems. In general, the state space of a labelled Markov process may be a continuum. In this paper, we study approximation techniques for continuous-state labelled Markov processes. We show that the collection of labelled Markov processes carries a Polish-space structure with a countable basis given by finite-state Mar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Electr. Notes Theor. Comput. Sci.
دوره 297 شماره
صفحات -
تاریخ انتشار 2013